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1. Let us consider a thin orthotropic shell of constant thickness h. Let
the material of the shell obey the generalized Hooke’s law and let it
have at each point three planes of elastic symmetry whose principal
directions coincide with the directions of the coordinate lines a, 8, y.
The middle surface of the shell is taken as a coordinate surface and it
is referred to curvilinear orthogonal coordinates a and 8 coinciding with
lines of principal curvature of the middle surface. The third coordinate
line y is rectilinear and represents the distance along the normal from
the point (a, B) of the middle surface to the point (a, B, y) of the
shell,

Renouncing the hypothesis on undeformable normals, we introduce the
following assumptions:

a) The distance along the normal (y) between two points of the shell
after deformation remains unchanged;

b) The shear stresses Tay and 7, vary in accordance with a specified
law through the thickness of the se{ll.

2. For greater clarity we first present the suggested method for a
plate (k; = 0, k, = 0, a, B, y are rectilinear orthogonal coordinates).

The basic assumptions will be written down in the following form:

a) we assume approximately
ey =10 2.1

b) the shear stresses ray and rg, are of the form
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ter =i P B + L (X + X7 4 T

. Y- (2.2)
oy = fa (0§ (3 B) + L (71 + ¥ + T

where X%, ..., Y~ are the components along the axes of a moving tri-
hedron (along the directions of positive tangents to the lines 8 = const,
a = const) of the vectors of intensity of surface loads, applied upon
the outer faces of the platey = 1/2 h and y = ~ 1/2 h, ¢la, B), ¥la, B)
are arbitrary functions of coordinates a, B to be found; f,(y) are func-
tions, characterizing the variation laws of shear stresses r ay and r By
through the thickness, whereby f.(z 1/2 h) = 0.

From the equations of the generalized Hooke’s law we have

Oq = Byies + Byep — A9y,  0p = Basep + Bye, — Ajo, (2.3)

Tay = Bsseay: Thy = Bueﬁw Tap = BeaeaB (2'4)
where*
El E2
Bll = m ’ Bzz = 1_:,1‘\"; ’ BGG == G129 355 == Glth B44 = G23
__ Eyvig 4wy _ By vegtvvis _ %k Fy
‘Al"—~_E‘3 1_\,1\,2 ? AZ_ Es 1-—-V1V2 : 12—.1—'\11\!2—-1—\'1\!2 ( l5)

From the equations of the theory of elasticity we have for the com-
ponents of strain

du, auB du, GuB
€x = o eﬁ'—‘gﬁ‘, 6432‘3‘5‘4‘5&— (2.6)
du u ou du du
I _ %Y s
=g v =5 +oga sy 5 -} 7 2.7

From relations (2.7), by virtue of (2.1), (2.2) and (2.4) we obtain
for the displacements of the plate

F:} 2

e = u (&, B) — v 5 + ¥ Xy F 9 Xy + Ty (1) @, (2.8)
a 2

up = v (0 B) — 7 5 -+ 1¥1+ 55 Vo + Jia (1) D,

= w (%, ) 2.9)

* Here and in the following the usual notation is used for the elastic

constants [1,2 1.
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where
1 Xt—x- 1 Yr—Y- 1
X:-—-g;;——“gw, Yl——g;;; 5 mlma;‘?(“s@) 2.10)
1 - 1 - 1 ’
Xg=pgz X' —=X), Yo=p=-("—V), Qp=g-¢p
¥ ¥
Ja=\rmdr  Ju={f0d (2:11)
[} 0

ula, B), vle, B), wla, B) are the tangential and normal displacements of
the middle surface of the shell.

From the third equation of equilibrium of a differential element of
the plate [ 2] we obtain

= s () 2= B+ () m(— ¢

2
+ A (BalE 4 Bu D) — Bu[Tn 0 SR+ 15+ e —
—Bullut G+ 15+ 5| T 4 2.12)
sulou() = DI+ ()= (- 1]
——h (B“%‘? 4+ By, %) — 2z, (2.13)
where
Z, = Z*; z Z, =2+ 2" (2.14)

Z+% Z~ are the normal components of the vectors of intensity of surface
loads, applied at the external faces of the plate (y = /2 h, y = - 1/2 h).

Equation (2.13) is the third integral equation of equilibrium. From
(2.3) and (2.4), by virtue of (2.6), (2.8), (2.9) and (2.12), we obtain
expressions for o,, og and r af’ which will not be presented here.

Substituting the expressions for the stresses o, o8 Taf Tay and
T By into the usual formulas for the internal forces and moments we ob-
tain

du h* 38X 3@1 r. v h? 3Y2 ?93
T==Bu(fl‘5; -i“iga—;‘f‘frgg)-%"sz(hggJ‘gg-gg%'fz ag)“*‘

2 . ht
+ 4, [355(&%% 4 o 22 + Bu (1 55+ _g_gé%)“hx @ B)] (2.15)
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v h® AX, a0, du h? 84X, iy
T, =Bss(h§§+-§za—f;+-fz“‘)+3m<ka—a— +§g'5;+-’1—37)+

%
+ A [Bu (12 52+ 55 5) + Bus (11 T2 + 21 5g2) — b B (2:16)

S=Buli( +a@ftu(G + ) Hhmrhw] e

h3 & h? 3Xy o hs 3w h® 8Y.
Mx=3u(“**ﬁ'5&‘§+qg~3?+fsgf + By, “Eggi*Fﬁa—;'f‘
D, ilo hs 83X, oD, h3 8Y;
+J4—5§2)+Az[Bss(Jaj;a“{*Tg'g&*)**‘&:;(-’r@f‘i‘ﬁ@")] (2.18)

My=By(— 200 L B 1y j300) 4 By (— 2o 2w B 0% 5 2
38 / 12 5a* T 12 Ba

1288 T 12 98 Ba
D h® 8Y oD, he
+Az[344(f4'a—§+ﬁ“5§‘)+Bss(%;;"?”"ﬁ'%)] (2.19)
h® §w h3 48X Y’ . )
H=Bu[— 2355+ 17 (55 + 52) + oo + 152 (2.20)
Ny = By (Js@; 4 X)), N, = Byy (J4®, + hY) (2.24)

where the following notations are introduced:

(0 B) = 52 on (oh) - Jon (— ")) G2 o+ 5 Uon (ah)+Tn (1) g +

+ %‘(Bss %%‘E + By %) + 2y (2.22)
A Yok i h
n= {Jamdr, Jo= § vamdr L= | A
~Yih ~3ify R -3/ h
s h Y h Yy h
Jz == S jog ('r) d'{, J4 == S '{Joz (T) d’f: JG = S f2 (T)d'f (223)
.—!/! h ...l/2 h ._l/z h

The equations of equilibrium of an element of the shell are of the
form

aT a8 T a8

7 T a5 = — BusXa 8 T ag = Buls (2.24)
aM, | oH oM, | 9H aNy | 0Ny _
2wt =N pFra=Ne HtH=—>=

Substituting the values of the internal forces and moments from
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(2.15)-(2.21) into Equations (2.24) and taking into account (2.10) and
(2.11), we obtain

Ly (Ciifc) u -+ Ly (Czk} v+ 355J1L11 (Bza) <P 'i“ 34332[)12 (Bth) ff) -

Al ) )

J"} 6(16%] o 1L (Biw) X5 - Lyg (Bin) Yol —
0*X Y o7 .
— B Xy + Ay [ (355 8@22 + B“f)aa;) RS 1] (220)

Laz (Cik) v Ly (Czk) U+ agaf gl (sz) ‘-P 4~ @55 1Lys (Bik) @ —

”Aﬂ[{A[“’“?( )“‘“JO%( 3)] =+ {{f‘“(ﬁ\)”’*‘f‘“’“ﬁ)}”

— I} | = — 5 s (Bu) Yo o+ Ly (Bit) Xl — BusY -+ Ao [ 25 (B 32 +
4 By 352+ 52 (2.26)

ale) Tl 4 Vele) = (-2l -
:xmzam;e(B, 9y +BM%%‘—> (2.27)

Lys (Dix) w — s/ 3044 (Bix) P Aggt s Lys (Bm) 2 [fm “”) —Jo1 (““ —i‘ﬂ P

d »” s 7
— A (V5 2 4 Tyl ) = T o (Bn) X+ Lo (Bu) Y] — hBygX, +

h3 X %y :
- A gy (Bss g + Buggss) (2.28)

Luy (D) 0 — aMJaLm <Bm> b anlsbas (B [Vor (5) = Toa (= 5)]¢—
3
— A4 (Js a5 T/ 6(:0{5 ) = g5 [Loa (Bur) Yy -+ Lo (Bix) Xa] —

7y X
— hByY, - Ay g (Bus 5+ Bus 550 (2.29)
where
82 62
Ly (i) = ay 55 aaz + Ggg 3 dp” Loy (ain) = Gg9 573 a5t -+ Ggs 553 (2.30)

}3
Ly, (aik) == (am - ag) m" y Dy = By, TL;“ y  Cip= Byh

tin 3% a8 o%
Ly (auw) = an ey + (a2 -+ 2a4) 5‘5‘5@? s Log (ain) = au 53“ b (@12+ 28160) 5Bdaz

Equations (2.25) through (2.29) constitute a complete system of five
differential equations with respect to five unknown functions u, v, w,
&, ¥, by means of which all relevant quantities of the plate may be ex-
pressed.

The boundary conditions may be represented in the usual form[3,4 1.
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3. The case when X*

505

0 and Y* = 0 is of considerable practical

interest, that is, the case when the plate is subjected only to normal

loading Z*. In this case assuming also that [3]

L) =5 (3 h—1) (-1)
Equations (2.25)-(2.29) take on the form
(€4 Ly (Cix) v = hAl‘W L Log (Cir) v+ Lys (Cit) u = hAz‘z,_)%‘ (3.2)
h? 6a ' gg %Zz B3 K2 0Z, o
L3 (Dir) w — TO— [assLny (D) ¢ + @aalons (Dix) 1 - TP TG e (3.4)
Las (Da) w0 — - LauuLan (D) § -+ 0ssLag (Di) 71+ S § = — 4,20 222 3.5
Then the relevant quantities are
T,=Cy, 2:; o+ % L kA2, e (2242 o0
Ty=Cp 5 Cmm-—lezZl, % " a '
My = —Du g~ Du i i (e ge + B g5) — 1o Ails
M2=—D‘,2%2—;_D12‘;—2£—{4W<%—Z% )R Az, @
H ’—‘D“[ aizl;; + 10 (3105 3?5 3144 gj:)] Nl:%@’ N, ;LZ ¢
o= Bua(Gg — 1 gas) + B ) (1T =5 e+ 5% -
{Zl-l 6(7-—+ 23)22] (3.8)
o = B (G5 — 50+ Br’(f’“ va) T — 5 (g 5 ) -
4, [Zl 4 6(E—1 1)z ] (3.9)
Tafs = BGG[BB ab — 2 %%‘%(T%“%)(Kﬁﬁ“ﬁ%)] (3.10)

4. In the case of a shallow orthotropic shell we assume approximately
that the internal geometry of the middle surface of the shell of non-
vanishing Gaussian curvature does not differ from the Euclidian geometry

on the plane,that is, for a suitably chosen absolute

system of coordi-

nates the coefficients of the first quadratic form are [ 2,5 ]

/121, B:1

(4.1)

With the same degree of accuracy we assume that the principal curva-
tures of the middle surface behave as constant quantities

ky = const, ks = const

(4.2)
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The theory of very shallow shells taking into account the effect of
transverse shear and normal stresses o, will be constructed on the basis
of assumptions introduced in Section I, which will be written down in
the following form:

a) we assume approximately

e, =0 (4.3)
b) the shear stresses are of the form [ 3,41
Ty = 5 (3R — 1% e (@ B), =5 GFP—1)9@B) (44

where, as before, ¢ = ¢la, B) and ¢ = Yla, B) are arbitrary unknown func-
tions of the coordinates a f3.

For the sake of simplicity it is assumed here that the shell is sub-
jected only to a normal loading Z = Z* and that the shear stresses r
and rg, vary through the thickness of the shell, following the parabolic
law (3.1).

From the theory of elasticity the components of strain are

ou ou du ou
3a=‘5&g+k1uyy eﬂ='a_BE+k2uy) eaB=“a‘B§+5—£‘
ou ou ou du ou (4 9)
=3 = %1 _X S I WS :
& =3y Cer = G T 35 v =3, 1T 38

Here, and in the following, quantities of the order hki will be
neglected as compared to unity on the basis of pronounced shallowness of
the thin shell considered; this will be done whereever it is obvious.
The shell is assumed to be thin but the thickness h is still a finite
quantity.

Taking (4.4) into account, the generalized Hooke’s law, which in the
case of the shell considered is of the form (2.3) and (2.4), the dis-
placements of any point of the shell in accordance with (4.5) will be

w (B 1 ey OP X (B =
Ua=u—Y 35 '*‘E;(T-_s‘) @ us=0—155 + g5 (T — 3 )9 =0 (46)

where u = ula, B), v = vla, B), v = wla, B) are the tangential and normal
displacements of the corresponding point of the middle surface of the
shell. From (4.6), substituting the values of u,, ug, into (4.5) and
further into (2.3) and (2.4), we obtain the following expressions for

the stresses
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a v 0% P*w
Op = Bua—: + Bls‘é‘é“ —x (Bu 3;‘5’ + Bia 5@) + (k1Bu + Ky Byo) w +

B2 3 ¥ o
Dl B ke 6
& 3 3% *w
op = By, a_;' + Bys 3‘2‘ — (Bzz 55‘2 -+ By, 5;5) + (kaBas + kyBra) w+
h3 2\ d 9
T ‘%‘ (T — lg-) (Bradaa “5%“ + Biaflss B—Z‘> — Azoy (4.8)

h?

‘ 02 2 ) 8
%es = Bus (35 + 55) — 2Boo¥ gy + £ (7 — 5 ) (Bostss 33 + Bostua ) (4.9)

Substituting the relations for the stresses o , og, r,, andrg, into
the third differential equation of equilibrium [2 ], expressed in temrms
of curvilinear coordinates, and integrating with respect to y, taking
into account that 0, = Z=Z* fory = 1/2h ando, = 0 for y=- 1/2h,
with the accuracy within the theory of very shallow shells, we obtain
for the stress o

b4
z
oy =5 +% [(kau + kyBy,) -g—;— + (k3 By - k1 By,) _g"é. +
+ (62*Buy + 2kyky B+ ka*Bsy) w] + %(% - 72) [(k1311 + kyB1a) %u; +
tw he 3
+ (faBae + FaBa) 5&‘*] —3(z— 13‘) (52 + -2%’—) (4.10)

Substituting the expressions for the stresses o, 98 Taf+ Tays "By
into the usual formulas for the internal forces and moments we obtain

T,=Cy, (3—: + k) +Cg (g—; + ) — AiT" (4.11)

Ty=Cyy (3—; + k) +Cg (j—; + kyw) — A,T" (4.12)

S =C (—g-g- + g—;) (4.13)

M,=—p, 2% D, %‘; +£ (a“Dn %% tauDs .g-‘é.’-) — AM® (4.14)

9% *w h? a .
My, = — Dy, 5’5'{; — Dy, 3@ T (044022 5% + a5 Dy ’g’% — A,M" (4.15)

02 h? 8
H= —2Dssm% + TO_D“ (ass‘gg‘ + au'gg‘), Ni= %?r N,= %9” (4-16)
where

. 13 o2 ~
T"'= 5 Z 4+ (kyDyy+ ko Dy5) %g;_ + (kaDgp + k1 Dy,) %%u‘; 4.17)
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* a
M = (kyDyy + kyDyy) 'a—s“ + (keDoy + k1 Dyy) —g—g— -+ (4.18)

h? 0
+ (k1*D1y + 2kakaDys + ko’ Do) w — 155 (g% + "5%)‘)

The equations of equilibrium of an element of the shell are of the
form

aTy | 98 oT, | S oM, | oH
e T g = op g = O 5o aB‘N’

oM, | oH dNy 8N

5 + 5 = Vo (T + boTo) — G- — 55+ = Z (4-19)

Substituting expressions (4.11) to (4.16) into Equations (4.19), we
obtain a system of differential equations of very shallow shells:

Lu € 8 + Ly (Ca) © + (:Cax + kuCr) g — (4.20)
3,

— Ay [(61Dss + koDra) o5 + (kD + kDo) s | = Ar 5

Lys (€0 + Lus (Cu) u + (6sCas + iCis) G5 — (4.21)

- 33 9% h
_ A2 [(kzDgz + k1D12) 5‘;; + (lell + klez) 33;;2] = Az—f g_g—

(k1€ + kzclz)% + (keCos + k1€ 12)2—g+ (k12C 1y -2k ks Crp -+ Ky ?C 0) w—
2 (% T iy o+ ko) [(kaDy + D) S (4.22)
~+ (k2 Das + k1 Dy5) %;’—‘;} =2 [1 + —'21(k1A1 + szz)]

Lys (Du) @ — - [0 Ly (Dig) @ + taals (D) 91 + 59 +

+ Ay [ (enDus + kaDig) % + (koDas + EaDis) s + (4.23)
(k2 Dsy + 2keDys + ke Das) g — 135 (52 + smm)| = 0
Los (Dis) 0 — - [a44Ly (Ds) § + 5Lz (D) 9] + o5 ¢+
+ Ay [ (koDss + KaD1e) gz + (aDus + buDso) g + (4.24)
+ (kD + 2ekeaDisz + ke2Dos) 55 — 15 (5 + sms )| = ©

Equations (4.20) to (4.24) constitute a complete system of five
differential equations with respect to five unknown functions u, v, w»,

¢, ¥

The basic equations of the theory of very shallow shells may be re-
presented also in the present formulation in the form of the mixed method
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[2,5 61.

The equation of compatibility of strain of the middle surface of the
shell is of the form

2 2 2
ey -+ b + Gt — e+ ok = 0 (4.25)

Examining Formulas (4.11) to (4.15), it is easy to see that the factor
of the stiffness G|, is the relative elongation of the middle surface ¢, of
C,, is the relative elongation €,, and of (g4 is the shear of the middle
surface w; further, the factor of the stiffness D11 is the parameter
characterizing the change of curvature of the middle surface x;, and
finally, D,, is the change of curvature x,.

Taking this into account, Equation (4.25) may be represented in the
form

Cn@Ty_ Cu®Ty | Cu®Ty  CudTy 1 &S, #w
G op* Q bat Q dat G 88 T Tyedudh | *3ad
§%w Cll Cm aer* C Cm T
—hgt (AR AR T (AR - AT =0 (420)

(Q == Cuczz - C122)

Let us introduce the stress function F = F(a, B), such that

a*F a*F aF
Ty = Ta—"‘g&'éy S—:”m {(4.27)

Then the first two equations of equilibrium (4.19) are satisfied
identically and from the remaining three equations (4.19) and the equa-
tion of compatibility (4.26), by virtue of (4.14)-(4,16) and (4.27), we
obtain a complete set of differential equations:

kS 7 Oe AR
VF — 4 (52 + 5—3-) =Z (4.28)

ne
L13 (Dik) W Td" [055[111 (Dik) (P + a44L12 (Dik) ({)] + %CP +
+ A [(Dus + BaDis) ok + (oD + yDig) v +

oa g
+ (k:*Dyy + 2k1k;D1g + Ko®Doy) g_? - ;% g;% + ajg’%)} =0 (4.29)

2
Lys (D) w — -1%" {@saloz (D) § + assLyg (Dix) @] + _;2_;‘ b+
2 3
+ 4, [(k2D22 + 1Dya) % + (ky Dy -+ kaDyy) % €

+ (k:*Dyy + 2k1ksDyp + k3*Doy) %% — % <-§;q;* ;ﬁ%’%)] =0 (4.30)
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Ly (Cu) F — Vot 4y Gt — 4 28) (uDus + baDo) Sz +
+[(4: 2 — 4 C")(kxun +kiDu) + (42 — "“) (k,Dyy +
C
+ ksz)] 300 9ps + ( 5 — Cn) (k2D + le“) apt =

=—3[(4F AIC“) Zr(aR-aPL] e

where
62 a!
Vr=kygoz + 1k P

C 4 C. 4 C 4
LCw) =2 2+ i+ (ca—2 ) siier (4.32)

Thus, the problem of a very shallow shell in the form of the mixed
method has been reduced to a system of four differential equations with
respect to four unknown functions F, w, ¢, ¢

The pertinent values of the problem may be determined with the aid of
Formulas (4.6)-(4.16). The tangential displacements (u, v) which enter
into the indicated formulas may be found from the equations

o _Cudf _Call 4 (45— Af“) (4.33)
[ Z 4 (kyDyy + ksDu) + (k2Dyy + k1 Dys) agz]
ﬁ:ciﬂm.c_“ﬂ__kgw+(h%&—&%&)* (4.34)

X 2 0w
x [_?:Z + (keD3a 4 k1Dyy) %Ei‘ + (kyDyy + koDyo) “5&‘5‘]

5. Let us consider two examples as an illustration, Without loss of
generality in the deductions and in the calculating procedure we consider
exauples of a transversely isotropic plate and shell, assuming that at
each point of the plate (or shell) the plane of isotropy is parallel to
the middle plane (or surface) of the plate (or shell), The following re-
lations are valid for the elastic constants of the material of the plate
(or shell) [1]:

Byy == Bpg= B1s 4 2Bgs = T—é‘_;?— = E°, Big == vE°
Bys = 1;"3", Byy -+ Bes = ! -iz—on 6.4

Bss»‘ﬁB“‘:G', A1=Az=—%v'(i+v)
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where E is the modulus of elasticity in directions in the plane of iso-
tropy, E° is the modulus of elasticity in directions perpendicular to
the middle surface, v is Poisson’s ratic in the plane of isotropy, v’ is
Poisson’s ratio characterizing the shortening in the plane of isotropy
accompanying extension in the y direction, G is the shear modulus
characterizing the distortion of angles between directions in the plane
of isotropy and the direction y.

Example 1. Let a rectangular plate (a x b) be simply supported along
the total contour, and be subjected to a loading which is distributed on
the surface of the plate in accordance with the law

Z+r=Z=gsin= T sin =X B Z =0 (5.2)

where ¢ is the intensity of loading at the center of the plate (a = 1/2 a,
B = 1/2 b).

Assuming [3 ]

Q= Bcos_a..sm-bi, $= ('Jsm......cmz8 w= Asm.._.sm B (5.3)

we satisfy the conditions of simple support and from the system of equa-
tions (3.3)-(3.5) and by virtue of (5.2), (5.3) for the deflection of the
center of the plate we obtain

_ w4, AN\E E°
w._wo{1+ﬁh (’F""&T)[F v +v),.E.,.]} (5.4)
where
12atbtq

Yo = RES (B 4 By

is the deflection of the center of the plate determined with the aid of
the classical theory of plates, that is, with the aid of a theory which
is based on the hypothesis of the undeformable normals.

Examining Formula (5.4) it is easy to recognize that for certain
values of the ratios E°/G’, E°/E’, h/a the normal displacements, cal-
culated on the basis of the classical theory of plates, may differ con-
siderably from the corresponding displacements, calculated on the basis
of the theory advanced here.

Indeed, the classical theory of anisotropic plates, containing an
error of the order hzlaz as compared to unity, as could be expected, is
completely indifferent to ratios of the type B‘&/Bss, ;k/s“, ‘51833
which appear in more rigorous theories of anisotropic plates with a
numerical coefficient and the factor hz/a and may have considerably
larger numerical values.
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The theory advanced here for certain boundary conditions and for
certain loadings may also be used for the analysis of thick plates. For
example, in the case of a thick isotropic square plate (h/a = 1/3,

v = 0.3, a= b), when the plate is subjected to a loading which on the
surface of the plate (y = 1/2 h) is distributed in accordance with the
law (5.2), we have the following values for the deflection of the center
of the plate:

Exact theory [7 ] Proposed Theory {8] Theory [3 1 Classical
theory theory

W(E/qh) = 3.49 3.50 3.56 3.69 2.27

It is seen that even for such a thick plate (h/a = 1/3) the theory
advanced here yields an insignificant error (of the order 0.3%). The
error of the theory of isotropic plates of medium thickness [ 8 ] reaches
2%, and of the approximate theory [ 3 ], which does not take into account
the influence of normal stress o,, reaches 6%. The error of the classical

4
theory, however, is equal to 35%.

The calculations indicate that the theory presented also yields good
results in the analysis of thick plates., However, it may not be consider-
ed a theory of thick plates or plates of medium thickness without quali-
fication; for indicated plates, difficulties will arise in connection
with boundary conditions [3,9 1.

Finally, let us indicate that the correetion introduced into the
classical theory, due to the effect of transverse shear, is more signi-
ficant than the correction due to the effect of normal stress o,. For
example, in the problem of the thick plate considered above, the correc-
tion due to the effect of o, is of the order of 5%, while the correction
due to the effect of transverse shear reaches 30%. Numerous calculations,
carried out for actual anisotropic plates, confirm the discussions ex-
pressed above., In this connection we assume that in the analysis of thin
anisotropic plates (and shells) all those somewhat illogical theories are
applicable in which phenomena associated with the stress ay are not
taken into account on purpose.

Example 2. Let a very shallow, transversely isotropic, rectangular
(in plan form) shell be simply supported along its contour and let it be
subjected to a normally applied loading which is distributed in accord-
ance to the law (5.2) on the surface of the shell (y = 1/2 h). In this
example we shall neglect the influence of the stress o, . Thus, it will
be sufficient to assume in all equations and formulas A1 = Az = 0,

Letting [ 4 ]
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= Bcos__smﬁ, ¢=Csin” _cos “3
u == M cos ™. sin i, » = N sin ®% cos 7B
a b a B

(5.5)
w= A sin ** sin TP B
a

the conditions of free support will be satisfied and from the system of
equations (4.20)-(4.24) we obtain, by virtue of (5.2) and (5.5), for the
normal displacement of the center of the shell (a = a/2, 8= b/2)

w = wp [1 + h*) (5.6)
where
he E° /m? % \5
N m'z;'f("z‘“‘“zf) o1
Tk om? w2 2 Bt E°/m? n? ’
i 1—v3) |k — k 142 (2 =
12<a )'H W) (ks thi )[+10 G’(a2+b3>]

», is the normal displacement of the center of the shell, determined with
the aid of the theory which is based on the hypothesis of undeformable
normals.

Examining Formulas (5.6) and (5.7), we note that with an increase in
the rise of the shell (that is, with an increase of the ratios a/Rl,
a/Rz, the error committed in adopting the hypothesis of undeformable
normals is decreased. This error reaches its maximum value in the case
of a plate (k1 = l/R1 =0, ky = l/li‘2 = 0). Here the reason for this is
due to the fact that as the rise of the shell increases the influence of
flexural parameters upon the state of stress of the shell decreases,
which means a decrease in the influence of shear forces N, and N,, that
is, of shear stresses r__ and rg which produce the influence of trans-
verse shear. Generally speaking, the smaller the influence of flexural
phenomena upon the state of stress of the shell the smaller the "correc-
tion* of the classical theory of shells due to phenomena of transverse
shear.
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